Spoken Term Detection Using SVM-Based Classifier Trained with Pre-Indexed Keywords
نویسندگان
چکیده
This study presents a two-stage spoken term detection (STD) method that uses the same STD engine twice and a support vector machine (SVM)-based classifier to verify detected terms from the STD engine’s output. In a front-end process, the STD engine is used to preindex target spoken documents from a keyword list built from an automatic speech recognition result. The STD result includes a set of keywords and their detection intervals (positions) in the spoken documents. For keywords having competitive intervals, we rank them based on the STD matching cost and select the one having the longest duration among competitive detections. The selected keywords are registered in the pre-index. They are then used to train an SVM-based classifier. In a query term search process, a query term is searched by the same STD engine, and the output candidates are verified by the SVM-based classifier. Our proposed twostage STD method with pre-indexing was evaluated using the NTCIR-10 SpokenDoc-2 STD task and it drastically outperformed the traditional STD method based on dynamic time warping and a confusion network-based index. key words: decision process, pre-indexing, spoken term detection, support vector machine, verification
منابع مشابه
Two-step spoken term detection using SVM classifier trained with pre-indexed keywords based on ASR result
This paper presents a novel two-step spoken term detection (STD) method that uses the same STD engine twice and a support vector machine (SVM)-based classifier to verify detected terms from the output of the second STD engine. In the first STD process, pre-indexing of the target spoken documents from a keyword list built from the results of automatic speech recognition of the speeches is perfor...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 99-D شماره
صفحات -
تاریخ انتشار 2016